模具高速銑削加工技術

發(fā)布日期:2012-11-18    蘭生客服中心    瀏覽:2216

    在現(xiàn)代模具生產(chǎn)中,隨著對塑件的美觀度及功能要求得越來越高,塑件內(nèi)部結構設計得越來越復雜,模具的外形設計也日趨復雜,自由曲面所占比例不斷增加,相應的模具結構也設計得越來越復雜。這些都對模具加工技術提出了更高要求,不僅應保證高的制造精度和表面質(zhì)量,而且要追求加工表面的美觀。隨著對高速加工技術研究的不斷深入,尤其在加工機床、數(shù)控系統(tǒng)、刀具系統(tǒng)、CAD/CAM軟件等相關技術不斷發(fā)展的推動下,高速加工技術已越來越多地應用于模具型腔的加工與制造中。

   數(shù)控高速切削加工作為模具制造中最為重要的一項先進制造技術,是集高效、優(yōu)質(zhì)、低耗于一身的先進制造技術。相對于傳統(tǒng)的切削加工,其切削速度、進給速度有了很大的提高,而且切削機理也不相同。高速切削使切削加工發(fā)生了本質(zhì)性的飛躍,其單位功率的金屬切除率提高了30%~40%,切削力降低了30%,刀具的切削壽命提高了70%,留于工件的切削熱大幅度降低,低階切削振動幾乎消失。隨著切削速度的提高,單位時間毛坯材料的去除率增加了,切削時間減少了,加工效率提高了,從而縮短了產(chǎn)品的制造周期,提高了產(chǎn)品的市場競爭力。同時,高速加工的小量快進使切削力減少了,切屑的高速排出減少了工件的切削力和熱應力變形,提高了剛性差和薄壁零件切削加工的可能性。由于切削力的降低,轉(zhuǎn)速的提高使切削系統(tǒng)的工作頻率遠離機床的低階固有頻率,而工件的表面粗糙度對低階頻率最為敏感,由此降低了表面粗糙度。在模具的高淬硬鋼件(HRC45~HRC65)的加工過程中,采用高速切削可以取代電加工和磨削拋光的工序,從而避免了電極的制造和費時的電加工,大幅度減少了鉗工的打磨與拋光量。對于一些市場上越來越需要的薄壁模具工件,高速銑削也可順利完成,而且在高速銑削CNC加工中心上,模具一次裝夾可完成多工步加工。

    高速加工技術對模具加工工藝產(chǎn)生了巨大影響,改變了傳統(tǒng)模具加工采用的“退火→銑削加工→熱處理→磨削”或“電火花加工→手工打磨、拋光”等復雜冗長的工藝流程,甚至可用高速切削加工替代原來的全部工序。高速加工技術除可應用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM電極加工、快速樣件制造等方面也得到了廣泛應用。大量生產(chǎn)實踐表明,應用高速切削技術可節(jié)省模具后續(xù)加工中約80%的手工研磨時間,節(jié)約加工成本費用近30%,模具表面加工精度可達1 m,刀具切削效率可提高1倍。

二、高速銑削加工機床

   高速切削技術是切削加工技術的主要發(fā)展方向之一,它隨著CNC技術、微電子技術、新材料和新結構等基礎技術的發(fā)展而邁上更高的臺階。由于模具加工的特殊性以及高速加工技術的自身特點,對模具高速加工的相關技術及工藝系統(tǒng)(加工機床、數(shù)控系統(tǒng)、刀具等)提出了比傳統(tǒng)模具加工更高的要求。

1. 高穩(wěn)定性的機床支撐部件

   高速切削機床的床身等支撐部件應具有很好的動、靜剛度,熱剛度和最佳的阻尼特性。大部分機床都采用高質(zhì)量、高剛性和高抗張性的灰鑄鐵作為支撐部件材料,有的機床公司還在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和熱穩(wěn)定性,這不但可保證機床精度穩(wěn)定,也可防止切削時刀具振顫。采用封閉式床身設計,整體鑄造床身,對稱床身結構并配有密布的加強筋等也是提高機床穩(wěn)定性的重要措施。一些機床公司的研發(fā)部門在設計過程中,還采用模態(tài)分析和有限元結構計算等,優(yōu)化了結構,使機床支撐部件更加穩(wěn)定可靠。

2. 機床主軸

    高速機床的主軸性能是實現(xiàn)高速切削加工的重要條件。高速切削機床主軸的轉(zhuǎn)速范圍為10000~100000m/min,主軸功率大于15kW。通過主軸壓縮空氣或冷卻系統(tǒng)控制刀柄和主軸間的軸向間隙不大于0.005mm。還要求主軸具有快速升速、在指定位置快速準停的性能(即具有極高的角加減速度),因此高速主軸常采用液體靜壓軸承式、空氣靜壓軸承式、熱壓氮化硅(Si3N4)陶瓷軸承磁懸浮軸承式等結構形式。潤滑多采用油氣潤滑、噴射潤滑等技術。主軸冷卻一般采用主軸內(nèi)部水冷或氣冷。

3. 機床驅(qū)動系統(tǒng)

    為滿足模具高速加工的需要,高速加工機床的驅(qū)動系統(tǒng)應具有下列特性:

(1) 高的進給速度。研究表明,對于小直徑刀具,提高轉(zhuǎn)速和每齒進給量有利于降低刀具磨損。目前常用的進給速度范圍為20~30m/min,如采用大導程滾珠絲杠傳動,進給速度可達60m/min;采用直線電機則可使進給速度達到120m/min。

( 2)高的加速度。對三維復雜曲面廓形的高速加工要求驅(qū)動系統(tǒng)具有良好的加速度特性,要求提供高速進給的驅(qū)動器(快進速度約40m/min,3D輪廓加工速度為10m/min),能夠提供0.4m/s2到10m/s2的加速度和減速度。

    機床制造商大多采用全閉環(huán)位置伺服控制的小導程、大尺寸、高質(zhì)量的滾珠絲杠或大導程多頭絲杠。隨著電機技術的發(fā)展,先進的直線電動機已經(jīng)問世,并成功應用于CNC機床。先進的直線電動機驅(qū)動使CNC機床不再有質(zhì)量慣性、超前、滯后和振動等問題,加快了伺服響應速度,提高了伺服控制精度和機床加工精度。

4. 數(shù)控系統(tǒng)

    先進的數(shù)控系統(tǒng)是保證模具復雜曲面高速加工質(zhì)量和效率的關鍵因素,模具高速切削加工對數(shù)控系統(tǒng)的基本要求為:

(1) 高速的數(shù)字控制回路(Digital control loop),包括:32位或64位并行處理器及1.5Gb以上的硬盤;極短的直線電機采樣時間。

(2)速度和加速度的前饋控制(Feed forward control);數(shù)字驅(qū)動系統(tǒng)的爬行控制(Jerk control)。

(3) 先進的插補方法( 基于NURBS的樣條插補),以獲得良好的表面質(zhì)量、精確的尺寸和高的幾何精度。

(4)預處理(Look-ahead)功能。要求具有大容量緩沖寄存器,可預先閱讀和檢查多個程序段(如DMG機床可多達500個程序段,Simens系統(tǒng)可達1000~2000個程序段),以便在被加工表面形狀(曲率)發(fā)生變化時可及時采取改變進給速度等措施以避免過切等。

(5)誤差補償功能,包括因直線電機、主軸等發(fā)熱導致的熱誤差補償、象限誤差補償、測量系統(tǒng)誤差補償?shù)裙δ堋?此外,模具高速切削加工對數(shù)據(jù)傳輸速度的要求也很高。

(6) 傳統(tǒng)的數(shù)據(jù)接口, 如RS232串行口的傳輸速度為19.2kb,而許多先進的加工中心均已采用以太局域網(wǎng)(Ethernet)進行數(shù)據(jù)傳輸,速度可達200kb。

5. 冷卻潤滑

    高速加工采用帶涂層的硬質(zhì)合金刀具,在高速、高溫的情況下不用切削液,切削效率更高。這是因為:銑削主軸高速旋轉(zhuǎn),切削液若要達到切削區(qū),首先要克服極大的離心力;即使它克服了離心力進入切削區(qū),也可能由于切削區(qū)的高溫而立即蒸發(fā),冷卻效果很小甚至沒有;同時切削液會使刀具刃部的溫度激烈變化,容易導致裂紋的產(chǎn)生,所以要采用油/氣冷卻潤滑的干式切削方式。這種方式可以用高壓氣體迅速吹走切削區(qū)產(chǎn)生的切削,從而將大量的切削熱帶走,同時經(jīng)霧化的潤滑油可以在刀具刃部和工件表面形成一層極薄的微觀保護膜,可有效地延長刀具壽命并提高零件的表面質(zhì)量。

三、高速切削加工的刀柄和刀具

    由于高速切削加工時離心力和振動的影響,要求刀具具有很高的幾何精度和裝夾重復定位精度以及很高的剛度和高速動平衡的安全可靠性。由于高速切削加工時較大的離心力和振動等特點,傳統(tǒng)的7:24錐度刀柄系統(tǒng)在進行高速切削時表現(xiàn)出明顯的剛性不足、重復定位精度不高、軸向尺寸不穩(wěn)定等缺陷,主軸的膨脹引起刀具及夾緊機構質(zhì)心的偏離,影響刀具的動平衡能力。目前應用較多的是HSK高速刀柄和國外現(xiàn)今流行的熱脹冷縮緊固式刀柄。熱脹冷縮緊固式刀柄有加熱系統(tǒng),刀柄一般都采用錐部與主軸端面同時接觸,其剛性較好,但是刀具可換性較差,一個刀柄只能安裝一種連接直徑的刀具。由于此類加熱系統(tǒng)比較昂貴,在初期時采用HSK類的刀柄系統(tǒng)即可。當企業(yè)的高速機床數(shù)量超過3臺以上時,采用熱脹冷縮緊固式刀柄比較合適。

    刀具是高速切削加工中最活躍重要的因素之一,它直接影響著加工效率、制造成本和產(chǎn)品的加工精度。刀具在高速加工過程中要承受高溫、高壓、摩擦、沖擊和振動等載荷,高速切削刀具應具有良好的機械性能和熱穩(wěn)定性,即具有良好的抗沖擊、耐磨損和抗熱疲勞的特性。高速切削加工的刀具技術發(fā)展速度很快,應用較多的如金剛石(PCD)、立方氮化硼(CBN)、陶瓷刀具、涂層硬質(zhì)合金、(碳)氮化鈦硬質(zhì)合金TIC(N)等。

    在加工鑄鐵和合金鋼的切削刀具中,硬質(zhì)合金是最常用的刀具材料。硬質(zhì)合金刀具耐磨性好,但硬度比立方氮化硼和陶瓷低。為提高硬度和表面光潔度,采用刀具涂層技術,涂層材料為氮化鈦(TiN)、氮化鋁鈦(TiALN)等。涂層技術使涂層由單一涂層發(fā)展為多層、多種涂層材料的涂層,已成為提高高速切削能力的關鍵技術之一。直徑在10~40mm范圍內(nèi),且有碳氮化鈦涂層的硬質(zhì)合金刀片能夠加工洛氏硬度小于42的材料,而氮化鈦鋁涂層的刀具能夠加工洛氏硬度為42甚至更高的材料。高速切削鋼材時,刀具材料應選用熱硬性和疲勞強度高的P類硬質(zhì)合金、涂層硬質(zhì)合金、立方氮化硼(CBN)與CBN復合刀具材料(WBN)等。切削鑄鐵,應選用細晶粒的K類硬質(zhì)合金進行粗加工,選用復合氮化硅陶瓷或聚晶立方氮化硼(PCNB)復合刀具進行精加工。精密加工有色金屬或非金屬材料時,應選用聚晶金剛石PCD或CVD金剛石涂層刀具。選擇切削參數(shù)時,針對圓刀片和球頭銑刀,應注意有效直徑的概念。高速銑削刀具應按動平衡設計制造。刀具的前角比常規(guī)刀具的前角要小,后角略大。主副切削刃連接處應修圓或?qū)Ы牵瑏碓龃蟮都饨,防止刀尖處熱磨損。應加大刀尖附近的切削刃長度和刀具材料體積,提高刀具剛性。在保證安全和滿足加工要求的條件下,刀具懸伸盡可能短,刀體中央韌性要好。刀柄要比刀具直徑粗壯,連接柄呈倒錐狀,以增加其剛性。盡量在刀具及刀具系統(tǒng)中央留有冷卻液孔。球頭立銑刀要考慮有效切削長度,刃口要盡量短,兩螺旋槽球頭立銑刀通常用于粗銑復雜曲面,四螺旋槽球頭立銑刀通常用于精銑復雜曲面。

四、模具高速加工工藝及策略

    高速加工包括以去除余量為目的的粗加工、殘留粗加工,以及以獲取高質(zhì)量的加工表面及細微結構為目的的半精加工、精加工和鏡面加工等。

1. 粗加工

    模具粗加工的主要目標是追求單位時間內(nèi)的材料去除率,并為半精加工準備工件的幾何輪廓。高速加工中的粗加工所應采取的工藝方案是高切削速度、高進給率和小切削用量的組合。等高加工方式是眾多CAM軟件普遍采用的一種加工方式。應用較多的是螺旋等高和等Z軸等高兩種方式,也就是在加工區(qū)域僅一次進刀,在不抬刀的情況下生成連續(xù)光滑的刀具路徑,進、退刀方式采用圓弧切入、切出。螺旋等高方式的特點是,沒有等高層之間的刀路移動,可避免頻繁抬刀、進刀對零件表面質(zhì)量的影響及機械設備不必要的耗損。對陡峭和平坦區(qū)域分別處理,計算適合等高及適合使用類似3D偏置的區(qū)域,并且可以使用螺旋方式,在很少抬刀的情況下生成優(yōu)化的刀具路徑,獲得更好的表面質(zhì)量。在高速加工中,一定要采取圓弧切入、切出連接方式,以及拐角處圓弧過渡,避免突然改變刀具進給方向,禁止使用直接下刀的連接方式,避免將刀具埋入工件。加工模具型腔時,應避免刀具垂直插入工件,而應采用傾斜下刀方式(常用傾斜角為20°~30°),最好采用螺旋式下刀以降低刀具載荷。加工模具型芯時,應盡量先從工件外部下刀然后水平切入工件。刀具切入、切出工件時應盡可能采用傾斜式(或圓弧式)切入、切出,避免垂直切入、切出。采用攀爬式切削可降低切削熱,減小刀具受力和加工硬化程度,提高加工質(zhì)量。

2. 半精加工

    模具半精加工的主要目標是使工件輪廓形狀平整,表面精加工余量均勻,這對于工具鋼模具尤為重要,因為它將影響精加工時刀具切削層面積的變化及刀具載荷的變化,從而影響切削過程的穩(wěn)定性及精加工表面質(zhì)量。

    粗加工是基于體積模型,精加工則是基于面模型。以前開發(fā)的CAD/CAM系統(tǒng)對零件的幾何描述是不連續(xù)的,由于沒有描述粗加工后、精加工前加工模型的中間信息,故粗加工表面的剩余加工余量分布及最大剩余加工余量均是未知的。因此應對半精加工策略進行優(yōu)化以保證半精加工后工件表面具有均勻的剩余加工余量。優(yōu)化過程包括:粗加工后輪廓的計算、最大剩余加工余量的計算、最大允許加工余量的確定、對剩余加工余量大于最大允許加工余量的型面分區(qū)(如凹槽、拐角等過渡半徑小于粗加工刀具半徑的區(qū)域)以及半精加工時刀心軌跡的計算等。

    現(xiàn)有的模具高速加工C A D /CAM軟件大都具備剩余加工余量分析功能,并能根據(jù)剩余加工余量的大小及分布情況采用合理的半精加工策略。如MasterCAM軟件提供了束狀銑削(Pencil milling)和剩余銑削(Rest milling)等方法來清除粗加工后剩余加工余量較大的角落以保證后續(xù)工序均勻的加工余量。

3. 精加工

    模具的高速精加工策略取決于刀具與工件的接觸點,而刀具與工件的接觸點隨著加工表面的曲面斜率和刀具有效半徑的變化而變化。對于由多個曲面組合而成的復雜曲面加工,應盡可能在一個工序中進行連續(xù)加工,而不是對各個曲面分別進行加工,以減少抬刀、下刀的次數(shù)。然而,由于加工中表面斜率的變化,如果只定義加工的側吃刀量(Step over),就可能造成在斜率不同的表面上實際步距不均勻,從而影響加工質(zhì)量。

    一般情況下,精加工曲面的曲率半徑應大于刀具半徑的1.5倍,以避免進給方向的突然轉(zhuǎn)變。在模具的高速精加工中,在每次切入、切出工件時,進給方向的改變應盡量采用圓弧或曲線轉(zhuǎn)接,避免采用直線轉(zhuǎn)接,以保持切削過程的平穩(wěn)性。

    高速精加工策略包括三維偏置、等高精加工和最佳等高精加工、螺旋等高精加工等策略。這些策略可保證切削過程光順、穩(wěn)定,確保能快速切除工件上的材料,得到高精度、光滑的切削表面。精加工的基本要求是要獲得很高的精度、光滑的零件表面質(zhì)量,輕松實現(xiàn)精細區(qū)域的加工,如小的圓角、溝槽等。對許多形狀來說,精加工最有效的策略是使用三維螺旋策略。使用這種策略可避免使用平行策略和偏置精加工策略中會出現(xiàn)的頻繁的方向改變,從而提高加工速度,減少刀具磨損。這個策略可以在很少抬刀的情況下生成連續(xù)光滑的刀具路徑。這種加工技術綜合了螺旋加工和等高加工策略的優(yōu)點,刀具負荷更穩(wěn)定,提刀次數(shù)更少,可縮短加工時間,減小刀具損壞機率。它還可以改善加工表面質(zhì)量,最大限地減小精加工后手工打磨的需要。在許多場合需要將陡峭區(qū)域的等高精加工和平坦區(qū)域三維等距精加工方法結合起來使用。

    數(shù)控編程也要考慮幾何設計和工藝安排,在使用CAM系統(tǒng)進行高速加工數(shù)控編程時,除刀具和加工參數(shù)根據(jù)具體情況選擇外,加工方法的選擇和采用的編程策略就成為了關鍵。一名出色的使用CAD/CAM工作站的編程工程師應該同時也是一名合格的設計與工藝師,他應對零件的幾何結構有一個正確的理解,具備對于理想工序安排以及合理刀具軌跡設計的知識和概念。

五、高速切削數(shù)控編程

    高速銑削加工對數(shù)控編程系統(tǒng)的要求越來越高,價格昂貴的高速加工設備對軟件提出了更高的安全性和有效性要求。高速切削有著比傳統(tǒng)切削特殊的工藝要求,除了要有高速切削機床和高速切削刀具外,具有合適的CAM編程軟件也是至關重要的。數(shù)控加工的數(shù)控指令包含了所有的工藝過程,一個優(yōu)秀的高速加工CAM編程系統(tǒng)應具有很高的計算速度、較強的插補功能、全程自動過切檢查及處理能力、自動刀柄與夾具干涉檢查、進給率優(yōu)化處理功能、待加工軌跡監(jiān)控功能、刀具軌跡編輯優(yōu)化功能和加工殘余分析功能等。高速切削編程首先要注意加工方法的安全性和有效性;其次,要盡一切可能保證刀具軌跡光滑平穩(wěn),這會直接影響加工質(zhì)量和機床主軸等零件的壽命;最后,要盡量使刀具載荷均勻,這會直接影響刀具的壽命。

1. CAM系統(tǒng)應具有很高的計算編程速度

   高速加工中采用非常小的進給量與切深,其NC程序比對傳統(tǒng)數(shù)控加工程序要大得多,因而要求軟件計算速度要快,以節(jié)省刀具軌跡編輯和優(yōu)化編程的時間。

2. 全程自動防過切處理能力及自動刀柄干涉檢查能力

   高速加工以傳統(tǒng)加工近10倍的切削速度進行加工,一旦發(fā)生過切對機床、產(chǎn)品和刀具將產(chǎn)生災難性的后果,所以要求其CAM系統(tǒng)必須具有全程自動防過切處理的能力及自動刀柄與夾具干涉檢查、繞避功能。系統(tǒng)能夠自動提示最短夾持刀具長度,并自動進行刀具干涉檢查。

3. 豐富的高速切削刀具軌跡策略

    高速加工對加工工藝走刀方式比傳統(tǒng)方式有著特殊要求,為了能夠確保最大的切削效率,又保證在高速切削時加工的安全性,CAM系統(tǒng)應能根據(jù)加工瞬時余量的大小自動對進給率進行優(yōu)化處理,能自動進行刀具軌跡編輯優(yōu)化、加工殘余分析并對待加工軌跡監(jiān)控,以確保高速加工刀具受力狀態(tài)的平穩(wěn)性,提高刀具的使用壽命。

    采用高速加工設備之后,對編程人員的需求量將會增加,因高速加工工藝要求嚴格,過切保護更加重要,故需花多的時間對NC指令進行仿真檢驗。一般情況下,高速加工編程時間比一般加工編程時間要長得多。為了保證高速加工設備足夠的使用率,需配置更多的CAM人員,F(xiàn)有的CAM軟件,如PowerMILL、MasterCAM、UnigraphicsNX、Cimatron等都提供了相關功能的高速銑削刀具軌跡策略。

六、結束語

    高速切削技術是切削加工技術的主要發(fā)展方向之一,目前主要應用于汽車工業(yè)和模具行業(yè),尤其是在加工復雜曲面的領域、工件本身或刀具系統(tǒng)剛性要求較高的加工領域等,是多種先進加工技術的集成,其高效、高質(zhì)量為人們所推崇。它不僅涉及到高速加工工藝,而且還包括高速加工機床、數(shù)控系統(tǒng)、高速切削刀具及CAD/CAM技術等。模具高速加工技術目前已在發(fā)達國家的模具制造業(yè)中普遍應用,而在我國的應用范圍及應用水平仍有待提高,由于其具有傳統(tǒng)加工無可比擬的優(yōu)勢,仍將是今后加工技術必然的發(fā)展方向。