微光學元件加工方法
發布日期:2012-10-28 蘭生客服中心 瀏覽:4120
由于受應用需求的驅動,對微光學元件加工技術的研究也在不斷深入,出現了多種現代加工技術,如電子束寫技術、激光束寫技術、光刻技術、蝕刻技術、LIGA技術,復制技術和鍍膜技術等,其中最為成熟的技術是蝕刻技術和LIGA技術。
這些技術基本都是從微電子元器件的微細加工技術發展而來,但與電子原件不同,三維成型精度和裝配精度對光學元件來說是至關重要的,將會直接影響其性能,因此這些方法各自都有它自身的缺陷和使用的局限性。如由于視場深度的限制,光刻技術僅限于二微結構和小深寬比三維結構的加工;采用犧牲層蝕刻技術,雖然可以實現準三維加工,但易使材料產生內應力,影響最終的機械性能,且設備造價非常昂貴;LIGA技術利用的高準直度的X射線光源,一般要通過同步輻射加速器得到,造價比光刻設備還要高許多,一般實驗室和企業都很難負擔得起;電子束寫技術能夠加工納米級的精密結構,但效率低,難以進行批量生產。復制技術,包括熱壓成型法、模壓成型法和注射成型法等,是一種適于批量生產的低成本技術,但要求其模具具有較高精度和耐用性。
微光學元件的另一加工方法是超精密機械加工技術。最近“財富”雜志上有這樣一句話:“超精密加工技術對光學元件的作用猶如當初集成電路對電子元件的作用”。這句話雖然不無夸張,卻說明了用超精密機械加工技術進行微光學元件的加工已經引起人們極大的重視。超精密機械加工技術在微光學元件加工中的應用將在下一節詳細論述。
上一篇:微光學元件的應用
下一篇:非球面零件超精密切削加工技術
-
高溫合金的難加工主要特點
航空發動機的零部件材料很大一部分是Ni基高溫合金,屬于難加工材料中很難加工的材料,且大部分零件的加工為車削加工,其相對切削性能小于0.2(正火狀態45#鋼的相對加工性能為1)。 高溫合金的難加工主要特點: 1. 切削力大。高溫合金的
2013-09-10 -
鈦合金薄壁件的車削加工
某航空發動機易損件,最小壁厚為2mm,總長400mm,是一個典型長薄壁件。技術要求較高: 1、孔徑公差為0.046, 2、外圓公差為0.03, 3、表面粗糙度Ra為1.6。 為保證壁厚差,孔與外圓必須同軸,加工難度較大。材料
2013-09-10 -
盤形薄壁零件的車刀角度的設定
在生產實際中盤形薄壁零件應用較廣。由于工件較薄,剛性較差,采用常規的切削加工方法,受軸向切削力和熱變形的影響,工件會出現彎曲變形,很難達到技術要求,產品合格率極低。因此,設計出一套行之有效的加工方法十分必要。傳統方法采用內孔及端面定位,先加
2013-09-10 -
鈦合金零件的深孔螺紋加工
深孔攻絲意味著攻絲深度大于絲錐直徑的1.5倍以上。如當用一只直徑為1/4″的絲錐加工深度為3/8″的螺紋時,這種情況通常稱為深孔攻絲。 在鈦合金零件上進行深孔攻絲是非常具有挑戰性的。如果在一個接近完工的零件上,由于絲錐破損產生的刮削作用
2013-09-10