非球面零件超精磨削裝置
發布日期:2012-10-28 蘭生客服中心 瀏覽:4240
英國Rank Pneumo公司1988年開發了改進型的ASG2500、ASG2500T、Nanoform300機床,這些機床不僅能夠進切削加工,而且也可以用金剛石砂輪進行磨削,能加工直徑為300mm的非球面金屬反射鏡,加工工件的形狀精度為0.3-O.16μm,表面粗糙度達Ra0.01μm。
最近又推出Nanoform250超精密加工系統,該系統是一個兩軸超精密CNC機床,在該機床上既能進行超精密車削又能進行超揚密磨削.還能進行超精密拋光。最突出的特點是可以直接磨削出能達到光學系統要求的具有光學表面質量和面型精度的硬脆材料光學零件。
該機床采用了許多先進的Nanoform600、Optoform50設計思想,機床最大加工工件直徑達250mm,它通過一個升高裝置使機床的最大加工工件直徑達到450mm,另外通過控制垂直方向的液體靜壓導軌(Y軸)還能磨削非軸對稱零件,機床數控系統的分辨率達O.001μm,位置反饋元件采用了分辨率為8.6nm的光柵或分辨率為1.25nm的激光干涉儀,加工工件的面型精度達0.25μm,表面粗糙度優于Ra0.01μm。
Nanocentre250、Nanocentre600是一種三軸超精密CNC非球面范成裝置,它可以滿足單點和延性磨削兩個方面的使用要求,通過合理化機床結構設計、利用高剛度伺服驅動系統和液體靜壓軸承使機床具有較高的閉環剛度,x和Z軸的分辨率為1.25nm,這個機床被認為是符合現代工藝規范的。CUPE生產的Nanocentre非球面光學零件加工機床,加工直徑達600mm.面型精度優于0.1μm,表面粗糙度優于Ra0.01μm。CUPE還為美國柯達公司研究、設計和生產了當今世界上最大的超精密大型CNC光學零件磨床“0AGM2500”,該機床主要用于光學玻璃等硬脆材料的加工,可加工和測量2.5m×2.5m×O.61m的工件,它能加工出2m見方的非對稱光學鏡面,鏡面的形狀誤差僅為1μm。
日本豐田工機研制的AHN60―3D是一臺CNC三維截形磨削和車削機床,它能在X、Y和Z三軸控制下磨削和車削軸向對稱形狀的光學零件,可以在X、Y和Z軸二個半軸控制下磨削和車削非軸對稱光學零件,加工工件的截形精度為0.35unl,表面粗糙度達Ra0.016μm。另外東芝機械研制的ULG―100A(H)超精密復合加工裝置,它用分別控制兩個軸的方法,實現了對非球面透鏡模具的切削和磨削,其X軸和Z軸的行程分別為150mm和100mm,位置反饋元件是分辨率為0.01μm的光柵。
上一篇:非球面零件超精密切削加工技術
下一篇:非球面光學零件的ELID鏡面磨削技術
-
高溫合金的難加工主要特點
航空發動機的零部件材料很大一部分是Ni基高溫合金,屬于難加工材料中很難加工的材料,且大部分零件的加工為車削加工,其相對切削性能小于0.2(正火狀態45#鋼的相對加工性能為1)。 高溫合金的難加工主要特點: 1. 切削力大。高溫合金的
2013-09-10 -
鈦合金薄壁件的車削加工
某航空發動機易損件,最小壁厚為2mm,總長400mm,是一個典型長薄壁件。技術要求較高: 1、孔徑公差為0.046, 2、外圓公差為0.03, 3、表面粗糙度Ra為1.6。 為保證壁厚差,孔與外圓必須同軸,加工難度較大。材料
2013-09-10 -
盤形薄壁零件的車刀角度的設定
在生產實際中盤形薄壁零件應用較廣。由于工件較薄,剛性較差,采用常規的切削加工方法,受軸向切削力和熱變形的影響,工件會出現彎曲變形,很難達到技術要求,產品合格率極低。因此,設計出一套行之有效的加工方法十分必要。傳統方法采用內孔及端面定位,先加
2013-09-10 -
鈦合金零件的深孔螺紋加工
深孔攻絲意味著攻絲深度大于絲錐直徑的1.5倍以上。如當用一只直徑為1/4″的絲錐加工深度為3/8″的螺紋時,這種情況通常稱為深孔攻絲。 在鈦合金零件上進行深孔攻絲是非常具有挑戰性的。如果在一個接近完工的零件上,由于絲錐破損產生的刮削作用
2013-09-10